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Turbulent boundary-layer structure in
supersonic flow

By A.J.SMmiTs

Department of Mechanical and Aerospace Engineering, Princeton University,

Princeton, New Jersey 08544, U.S.A.

A summary is given of the recent experimental data on the structure of turbulent
boundary layers in supersonic flow. The physical mechanisms differentiating

PHILOSOPHICAL
TRANSACTIONS
OF

addition to the usual viscous effects.

In some respects, however, the direct effects of compressibility on wall turbulence
seem to be rather small, as long as the freestream Mach number is less than about 5.
Some of the most notable differences between subsonic and supersonic boundary
layers may be attributed to the variation in fluid properties across the layer. As
evidence for this assertion, consider the zero pressure gradient boundary layer
studied by Spina & Smits (1987), Fernando & Smits (1990), and Spina et al. (1990).
In this case, the boundary layer developed on the nozzle wall of a blowdown wind
tunnel, with a freestream Mach number of about 2.9, and a unit Reynolds number
of 69x10°m™. At the point of interest, the boundary layer thickness was
approximately 28 mm, and the Reynolds number based on momentum thickness and
freestream conditions was about 80000 (see also table 1). There is a large variation
in fluid properties across the layer: the density and viscosity vary by a factor of
about three, resulting in a five-fold decrease in kinematic viscosity as we move from
the wall to the freestream. The heat transfer is small, typical of supersonic blowdown
facilities, so that the wall conditions are nearly adiabatic, and the fluid property
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variations are caused almost completely by frictional heating.
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incompressible and compressible boundary layers are discussed, and a simple model
— p y lay p
> = for the Mach and Reynolds number dependence of the decay of the large-scale
O 0 motions is proposed.
o
= O
= O 1. Introduction
Hw

When a turbulent boundary layer forms in a supersonic flow, mean density gradients
exist in addition to mean velocity gradients, and the turbulent field consists of
pressure, density and velocity fluctuations. Energy is continually transferred among
these three modes, and the transport mechanisms are therefore more complex than
those encountered in constant property flows. In some parts of the flow, the relative
speed of adjacent turbulent motions may be transonic or supersonic, and it is possible
that local compression waves and ‘shocklets’ could affect the turbulence evolution.
Vorticity can be produced through baroclinic torques, since the density is not just a
function of temperature, and energy may be dissipated by sound radiation, in

Now, when the velocity profile is plotted in classic inner (y,u,,v,) and outer
(y,u,,0) layer coordinates, the profile does not follow the log law, as expected. One way
to reconcile this is through a modified scaling, taking into account the fluid property
variation through the layer. In particular, if the results are normalized by a velocity
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Figure 1. (@) Comparison of flatness profiles: i, streamwise mass-flux fluctuations in M, = 2.9
supersonic boundary layer (Spina 1988); o, streamwise velocity fluctuations in subsonic boundary
layer (Alving 1988). Figure from Smits ef al. (1989). (b) Comparison of intermittency distributions:
, (Klebanoft 1955) Re, = 7108, M = 0.01; 0, mass flux; o, total temperature (Owen et al. 1975),
Re, = 85000, M = 7.0. Figure from Owen ef al. (1975).

Table 1. Incoming flow conditions

Do/ (Nt m™2) 6.8x10°

T /K 26545

M, 2.84+0.04
U,/(ms™) 575420

(pU),/ (kg m2g71) 500430
Re,/m 6.54+0.5x107
4/mm 28+ 1.5

Re, 80000

(oX 0.0011+0.0001

scale derived using the wall stress and the local density (v/(7,/p)), as suggested by
Morkovin (1962), then the velocity profile will collapse on to the ‘universal’ log-law
variation. This rescaling is an example of a compressibility transformation, where it
is assumed that by adopting scales which take into account the fluid property
variations, the profiles can be made to collapse on to incompressible correlations. The
success of such transformations suggests that the intrinsic effects of compressibility
are small, and that it is sufficient to treat the compressible high-speed boundary layer
as a flow with non-uniform fluid properties, that is, the density (or temperature)
variation does not affect the dynamics of the flow, but simply acts as a passive
‘stratification’, bearing in mind that buoyancy effects are always negligible in high-
speed flows.

What about the turbulence? The simplest comparison between the turbulence
behaviour in subsonic and supersonic boundary layers is to compare the distributions
of <w') (= +/u?%, where «' is the instantaneous value of the longitudinal velocity
fluctuation). When normalized by u, (= v/ (7,/py)), the distributions appear to show
a strong Mach number effect (see, for example, Schlichting 1968, p. 659), but if the
velocity scale is +/(7,/p), the Mach number dependence is no longer evident (see
Smits et al. (1989) for further discussion).

In contrast, a more detailed inspection of the turbulence properties reveals certain
characteristics that cannot be collapsed by a simple density scaling. For example, it
is well known that the intermittency profile is fuller than the corresponding subsonic
profile (see, for example, Owen et al. 1975; Robinson 1986; Smits et al. 1989). One
definition of intermittency is I = (3/flatness), where flatness = u"*/(u?)2. The results

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2. (@) Streamwise cross-section of a Mach 2.5 boundary layer with Re, = 25000, obtained
using Rayleigh scattering; Smith et al. (1988). (b) Streamwise cross-section of a subsonic boundary
layer with Re, = 4000, obtained using oil droplet visualization (Falco 1977). (c) Streamwise cross-
section of a computer-generated subsonic boundary layer with Re, = 670, showing iso-vorticity
contours. The flow is direct Navier—Stokes simulation (Spalart 1988; Robinson 1990). Figure from
Spina et al. (1991).
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Figure 3. Comparison of the shear correlation coefficient: o, M, = 2.9 supersonic boundary layer
(Spina 1988); o, subsonic boundary layer (Alving 1988); ——, computation (Dussauge & Quine

1988). The hatched area indicates the best estimate for the supersonic data from an error analysis
of the systematic and random errors.

for the flatness factors obtained by Spina (1988) are given in figure 1a, and they show
a distribution significantly different from similar subsonic data, such as that taken
by Alving et al. (1990). Corresponding values of the intermittency factor are shown
in figure 10.

Recently, Smith (1989) and Smith et al. (1990 a) used Rayleigh scattering to visual-
ize the instantaneous density field in supersonic boundary layers at Mach numbers
of 2.5 and 2.9 respectively. An example of an image showing a cross-section of the
boundary layer in a plane parallel to the wall is given in figure 2 (note the superficial
similarity with cross-sections of incompressible boundary layers). These and similar
data were used by K. R. Sreenivasan and A. Johnson (personal communication),
and J. Poggie (personal communication) to estimate the fractal dimension of the
density interface, and the results indicated a decrease with Mach number, where a
representative value for the supersonic case was 1.2, compared with a typical value
for a subsonic boundary layer of 1.35. This observation may be interpreted as a
decrease in mixing across the turbulent-non-turbulent interface, and seems to
support the conclusion of a reduced level of intermittency with increasing Mach
number. L

The skewness (u?/ (u?)?) also shows significant differences, and what is even more
interesting is that the shear correlation coefficient R, (=u"v'/{u'y {v')) is differ-
ent (Smits et al. 1989). The subsonic data reveal a higher correlation across the
boundary layer with a nearly constant value of 0.45 for 0 < y/8 < 0.8, while the
supersonic correlation decreases steadily as y/d increases (see figure 3).

In addition, Smits et al. (1989) found that the length scales derived from space-
time correlations indicate that the spanwise scales were almost identical but that the
streamwise scales in Alving et al.’s (1990) subsonic flow were about half the size of
those in the supersonic flow. The large-scale structures in the subsonic boundary
layer also appear to lean more toward the wall than those observed in supersonic
flows, and their shear stress content is distributed differently among the four
quadrants. On the other hand, Spina et al. (1990) indicate that the convection
velocity distribution of the large-scale motions appears to be ‘universal’, indepen-
dent of Mach and Reynolds number. Furthermore, Spina et al. (1991) found that the

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4. (a) Ensemble-averaged flow field upstream and downstream of +vITA events, in a
reference frame moving with the convection velocity of the large-scale motions. M, = 2.9
supersonic boundary layer (Spina et al. 1991). (b) Schematic of a large-scale turbulent ‘bulge’ in
incompressible flow (Blackwelder & Kovasznay 1972). Figure from Spina et al. (1991).

Table 2. Calculated and measured decay distances for large-scale motions (Smith & Smits 1991)

Re, M y/d y* x,/0 %o.5/%q
Favre et al. 27900 0.04 0.03 34 9 0.07
0.15 170 10 0.21
0.77 872 13 0.55
Kovasznay et al. 27500 0.14 0.5 617 10 0.48
Owen & Horstman 218300 7.2 0.08 80 31 0.29
0.15 150 45 0.47
0.3 300 71 0.38
Klebanoff 73114 0.05 0.75 2070 22 ——

ensemble-averaged flowfield associated with the outer-layer bulges was very similar
to that observed by, for example, Blackwelder & Kovasznay in incompressible flow

(see figure 4).

Finally, there is an order-of-magnitude decrease in the rate of decay of the large-

Phil. Trans. R. Soc. Lond. A (1991)
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scale motions seen between low subsonic and high supersonic flows. Consider the
measurements of the longitudinal space-time correlations for optimum time delay by
Favre et al. (1957, 1958) and Owen & Horstman (1972). Denoting the longitudinal
distance in the point where the correlation falls to a level of 0.5 by the symbol x ;,
we see that at y/d = 0.15 the supersonic data gives a value ten times larger than the
subsonic data (see table 2).

2. Physical considerations

How can we explain these differences? Most of our understanding of turbulent
boundary-layer structure is based on studies of ‘canonical’ boundary layers, that is,
boundary layers developing on a flat plate, in a zero pressure gradient, with an
adiabatic wall, under incompressible flow conditions. In addition, most studies have
usually been performed at low Mach numbers, so that the inner layer occupies a
significant fraction of the total boundary layer, and laboratory measurements could
be obtained with sufficient resolution. It seems doubtful that models for boundary-
layer structure derived from such studies can be applied to a wider range of flow
conditions. In particular, how can the effects of Mach and Reynolds number be
incorporated ?

Clearly, at positions in the layer close to the wall, in the viscous sublayer and buffer
regions, Reynolds number effects will always be important. In the outer layer,
however, it has been widely held that Reynolds number effects are important only
at ‘low’ Reynolds numbers, where a commonly quoted cut-off value for low
Reynolds numbers is taken to be where the Reynolds number, based on a momentum
thickness, exceeds a value of 5000. This value corresponds to where the wake factor
of the mean velocity profile appears to become Reynolds number-independent (see,
for example, Coles 1962).

In supersonic flow, where there is usually a significant Mach number gradient
across the boundary layer, fluid property variations cause the Reynolds number to
vary across the layer, and a single Reynolds number cannot be used to characterize
the state of the boundary layer. For example, for the flow given in table 1, the
momentum thickness Reynolds number decreases from about 80000 to 15000 if the
fluid properties are evaluated at the wall temperature rather than the freestream
temperature. To illustrate this another way, we see from table 2 that the Reynolds
number based on boundary-layer thickness is about eight times larger for the high
Mach number flow of Owen & Horstman (1972) than it is for the low subsonic flow
studied by Favre et al. Yet in terms of wall units the thicknesses of the two layers
are almost identical.

So we expect in a turbulent boundary layer at high speeds that the outer layer is
not going to behave too much differently from the incompressible case, in that Mach
number gradients are small, so that the turbulent motions are at low subsonic speeds
relative to cach other and compressibility effects are small, and that fluid property
variations are small so that the Reynolds number is relatively constant. Morkovin’s
(1962) strong Reynolds analogy is expected to hold, where

/T =—(y—1)M*u'/U,
although there clearly exists an upper limit, to avoid an unphysically large increase
in temperature fluctuations 7" as the Mach number increases (see Gaviglio (1987) and
Spina et al. (1991) for a more complete discussion).
In the inner layer conditions are quite different. The Mach number gradient and

Phil. Trans. R. Soc. Lond. A (1991)
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the fluid property gradients have their maximum values in this region, as do the
levels of turbulent activity. It seems reasonable to expect that relative speeds of
the turbulent motions will become transonic, and eventually supersonic, as the
freestream Mach number increases. Taking the maximum root mean square (r.m.s.)
level of velocity fluctuation found near the wall, and forming a turbulent Mach
number m (= {u')/a), indicates that m must approach one with a freestream Mach
number of about 5. Compressibility effects will therefore become dynamically
important somewhere near a Mach number of 5 (for adiabatic walls). This Mach
number is also the commonly accepted lower limit for the onset of hypersonic flow.
At the same time, large changes in density and viscosity exist, which are strongly
dependent on heat transfer, and therefore the thickness of the sublayer will depend
on Mach number, Reynolds number, and wall temperature.

These considerations give rise to many questions, for which we do not have any
satisfactory answers. At what Mach and Reynolds number does the pressure—velocity
term begin to affect the flow dynamics? It appears from the work of Fernholz &
Finley (1980), using the data of Watson et al. (1973), that Morkovin’s density-
dependent velocity scale satisfactorily collapses the mean velocity data in zero
pressure gradient flows at Mach numbers up to at least 10. But when will shocklets
and sound radiation play a significant role in altering the turbulence structure?
What is the coupling between the instantaneous density and velocity fields ¢ In other
words, to what extent does the strong Reynolds analogy hold? At Mach 2.9, the
correlation between u” and 7" appears to be almost perfect, even instantaneously
(Smith & Smits 1990), but no data are available at higher Mach numbers. The
answers to these questions are important if we are to predict practical flows with
strong pressure gradients with some degree of confidence. Unfortunately, reliable
turbulence data at high Mach numbers are rare in number, and some data simply do
not exist. For instance, correlation measurements of any kind are not available
above Mach 7, and therefore at the present time little can be said about the structure
of high Mach number flows.

What about near-wall phenomena? How does the viscous instability of the
sublayer change when fluid properties vary with distance from the wall? Do fluid
property variations just change the effective Reynolds number ? Since the Reynolds
number increases away from an adiabatic wall faster than in an incompressible flow
(as the temperature decreases away from the wall, the viscosity decreases and the
density increases, causing the kinematic viscosity to decrease rapidly), then we
would expect the flow to become less stable as we move away from the wall at a rate
which is faster than in an incompressible flow at the same friction velocity. What is
the proper basis of comparison between compressible and incompressible boundary
layers in the near wall region? And in the outer region? Given that the kinematic
viscosity changes dramatically across the layer, how do the dissipation rates vary ?

Now, compressibility and fluid property variations are expected to play some role
in the inner layer, and a negligible role in the outer layer. But the fact that the outer
layer turbulence displays a sensitivity to Mach number gives some evidence for the
interaction between the inner and outer layer motions. The process is still very
poorly understood and remains the subject of controversy, but it may be possible
that the study of high-speed boundary layers can contribute to a deeper
understanding of this interaction.

Phil. Trans. R. Soc. Lond. A (1991)
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3. The role of pressure fluctuations

At supersonic speeds, it is generally supposed that pressure fluctuations are small
enough to be neglected. At Mach 2.3, for example, the r.m.s. wall pressure fluctuation
level is of the order of 1-2%, and the freestream level is less than half that value
(Dolling & Dussauge 1989). Dussauge et al. (1989) noted that the contribution of the
pressure fluctuations to the divergence of the fluctuating velocity div («) is small, as
long as m < 1. Under these conditions, div (u”) itself is small, and the fluctuating field
is nearly solenoidal. Now, in many flows m < 1, but the density fluctuations are not
small. Then the velocity field is solenoidal but the turbulent diffusion of momentum
and kinetic energy, for example, and the return to isotropy can be modified by the
density fluctuations (Dussauge & Quine 1989).

To identify the role of the pressure fluctuations more clearly, Brown & Roshko
(1974) compared the governing equations for two-dimensional supersonic and
incompressible, variable-density, plane turbulent mixing layers. The mean con-
tinuity and momentum equations for these two cases are identical, but the additional
equation to be satisfied for the supersonic flow is the energy equation:

P[OU/dxz+3V [oy]+0(pv') /oy +y~ 1V op/dy = 0, (1)

whereas for the incompressible flow it is the diffusion equation that needs to be
satisfied. To the boundary-layer approximation the two equations are identical only
if (1/P)0(p’'v")/dy is negligible compared with div U. In other words, the pressure—
velocity correlation can be used to characterize the significance of com-
pressibility effects distinct from any intrinsic density effects. An order of magnitude
analysis suggests that

aAU+ Vi+ UM+ Vo2 M? = 0, (2)

where Ug and V, are the velocity scales, and L and ¢ are the length scales for the x and
y directions respectively. The parameter o« = dJ/l. Thus the magnitude of the
contribution of the pressure—velocity correlation term, relative to the other terms,
depends on the non-dimensional parameter C' = o?M*. The parameter C' is evidently
a function of Reynolds number and Mach number, and this analysis suggests that the
dynamic importance of the pressure velocity correlation decreases (slowly) with
increasing Reynolds number, and increases quadratically with Mach number.

As Dussauge & Quine (1989) pointed out, the pressure—strain terms in the
Reynolds stress equations should also include the effects of density fluctuations, and
they proposed a modification to Rotta’s model of the return-to-isotropy to take this
into account. Calculations using a second-order closure predicted that the shear
correlation coefficient is a decreasing function of the Mach number, in agreement
with the limited experimental evidence available (see figure 3).

4. Mach and Reynolds number effects on structure

As suggested earlier, some of the models based on observations in low Reynolds
number, incompressible flows do not extrapolate well to other flow conditions. For
example, the visualization of Falco (1977) at a Re, of 4000 showed the presence of two
outer layer scales, large-scale turbulent bulges and smaller ‘typical eddies’ which
appear on the backs of the bulges (figure 2b). Falco measured the size of the typical
eddies to be 200 and 100 wall units in the streamwise and vertical directions

Phil. Trans. R. Soc. Lond. A (1991)
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Turbulent boundary-layer structure in supersonic flow 89

respectively, and found these sizes to be independent of Reynolds number over the
range 1000 < Re, < 10000. If the typical eddies truly scale on wall variables, then
as Reynolds number increases they will decrease in size relative to the largest scale
bulges. At high enough Reynolds numbers the typical eddy scaling separates them
so far in frequency space from the energetic motions in the outer layer (which remain
bounded at frequencies below about 10U, /4§) that they are unlikely to be dynamically
significant away from the wall, that is, carry a significant amount of shear stress.

One study that attempts to illustrate qualitatively the effects of Reynolds number
on the large structure of the outer layer is Head & Bandyopadhyay (1981). Their flow
visualization results show the dramatic effect of increasing Reynolds number on the
structure of the boundary layer. They propose that the whole of the boundary
layer (inner and outer layers) is populated by vortex loops which have a low aspect
ratio and appear as horseshoes at Re, = 600. As the Reynolds number increases,
these loops are elongated until they appear as ‘hairpins’ at Re, = 10000. In this
model, the outer layer bulges are made up of a large number of hairpins, which act
largely as a single structure, and Falco’s typical eddies are the heads of hairpin
eddies. With increasing Reynolds number, it seems reasonable to expect further
groupings of hairpins to occur, giving rise to a hierarchy of larger scale motions, as
long as the hairpin structure continues to be an important element of high Reynolds
number turbulence (see Smits et al. (1989) for additional discussion).

5. A hypothesis for the decay of the large-scale motions

To understand the dynamics of these hairpin structures, it is useful to consider the
behaviour of a stretching vortex in a viscous fluid: if the hairpins originate near the
wall, grow by stretching, and die by viscous cancellation of vorticity (see Smith et al.
19905), the solution to this model problem may indicate whether hairpin eddies are
a suitable prototype for high Reynolds number large-scale motions.

A line vortex in a viscous fluid has a representative scale r;, given by the location
of maximum tangential velocity. The rate of change of this radius will depend on two
competing influences: its rate of increase due to viscous diffusion, and its rate of
decrease due to stretching. Hence:

dri/dt = 2v— (r3/x) d/dt, (3)

which has the general solution

re 1 2v [ )
= s ) @
where x is the length of a piece of the vortex at time ¢, v is the local kinematic

viscosity, and ,(0) and x, are respectively the radius and length of the same piece of
the vortex at time ¢t = 0. For a stretching given by

da/dt = U(x/xy)* (5)
we have, for a =1,
r3/r(0) = b7 1+ A(D* " —1)] (6)
at the time when the length x, has grown to become bx, (b > 1). Here,
A = 2vz,/(2—a) Ur(0). (7)

The case of exponential stretching (@ = 1) was considered previously by Batchelor

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 5. Calculations for the stretching of a rectilinear vortex in a viscous fluid (4 = 0.075).

(1970), and that of linear stretching by Perry & Chong (1982). The present solution
allows a much wider range of stretching rates to be considered. The parameter 4 may
be estimated by adopting some approximate values appropriate to hairpins, that is:
Xy = 50v/u,, ry=10w/u,, U=U,—U, = 02U, and C; = 0.004, which gives 4 = 0.1.
To illustrate some of the implications, the solution for 4 = 0.075 is given in figure 5.
Note that for all stretching rates at this value of A the radius of the vortex first
decreases because stretching dominates over diffusion, and then increases as the
situation is reversed.

Such calculations indicate that high aspect ratio hairpin vortices can develop, even
with modest stretching rates (that is, rates considerably less than linear rates). If a
five-fold increase in radius is taken to be the cut-off at which viscous diffusion has
acted to cancel the vorticity contained in the two legs of the hairpin (which have
opposite signs of vorticity), then even with ¢ = 0.5 an aspect ratio of 200 seems
possible, corresponding to a boundary layer thickness (in incompressible flow) of the
order of 20000 wall units, and a Reynolds number based on momentum thickness of
about 70000.

Clearly, the rate of stretching of the hairpin depends on the proximity of the wall
and therefore the local level of shear. In its early phase of growth, when it is confined
to the near-wall region and its aspect ratio is of order one, the presence of high
gradients in the surrounding velocity field suggest a rapid stretching. In its late
phase, where the hairpin has grown to ‘fill” the boundary layer, its rate of stretching
in the outer flow is of the order of the boundary layer growth, which at high Reynolds
number is rather slow.

If we restrict ourselves to considering the outer layer motions, and we assume that
they are made up of a large number of hairpins undergoing a negligible stretching,
we can now suggest a hypothesis which accounts for the effect of Reynolds number
and Mach number on the average streamwise scale of the large-scale outer layer
structures (further details are given by Smith & Smits 1991). We assume that the
outer layer bulges convect downstream with a constant convection velocity, U,. Let
us suppose that the spanwise spacing of the counter-rotating legs of the hairpins is
set by the near-wall streak spacing, equal to an average value of 100v,,/u, (see Kline
et al. 1967). Then, if a hairpin is assumed to ‘die’ due to the cancellation of vorticity
by viscous diffusion, at a rate set by the local kinematic viscosity, it is possible to
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write a simple expression for the lifetime, ¢;, of a hairpin vortex. If we take the
diffusion distance to be, say, one quarter the average streak spacing, we obtain

v (vha) = 25vy/u,, (8)

where the subscript w refers to the conditions at the wall, and the subscript e to the
conditions in the freestream (these distinctions are important when considering a
compressible flow). During the time ¢, the hairpin will convect downstream a
distance, x4, given by x, = U_t,. Thus,

vV (vag/ue) = 25v,/u,. (9)

X 625 (u,\*p. U.v

H s Cw) Pe Zc’e
ence, ) OfR%(ue) P U, v (o)

Now, assuming that fluid properties vary according to

ﬂW/ﬂe = (TW/YIE)O'75? pe/pw = TW/YL’
v 1250 (Tw)z-wcq;

we obtain F—m i —U~e~7;

(11)

Experimentally, the average rate of decay of the large-scale motions can be
obtained from streamwise space-time correlations, and such data are given by Favre
et al. (1957, 1958), Kovasznay et al. (1970) and Owen & Horstman (1972). The details
of each experiment, and the calculated values of x,; are given in table 2. It may be
seen that for these two widely different flows, the distance at which the peak in
the space-time correlation falls to 0.5 (=, ;) correlates well with x,, at least for
yt > 80.

The reduced rate of dissipation at higher Mach numbers suggests a correspondingly
lower level of shear stress, and therefore this simple model may help to understand
(in addition to the role of the pressure—velocity correlation) why the shear correlation
coefficient in the outer layer is reduced below the subsonic value (figure 3).

Furthermore, if the rate of formation of the hairpin loops remains unaffected by
their rate of decay, then the slower the decay of the outer layer structures, the lower
the intermittency levels in the outer layer. The results of our hypothesis appear to
be in accord with the experimental results. For example, the values of x; calculated
for the Owen et al. (1975) and Klebanoff (1955) experiments show the same trend as
the intermittency levels obtained in these experiments (see figure 2).

The model proposed here has some interesting features.

First, it assumes that viscosity plays an important role in setting the timescales of
the outer layer motions, contrary to popular opinion, which holds that in the fully
turbulent part of the boundary-layer viscosity only serves to dissipate energy
without influencing the scaling. However, this conclusion has mostly been based on
experience with constant property flows where viscous-dependent effects may not be
strongly evident. It is interesting to note that the analysis by Fernholz & Finley
(1980) of a large sample of supersonic mean flow data indicated that a better length
scale for the outer layer is actually a modified Clauser or Rotta thickness
(= 0+/(2/C))), rather than the boundary-layer thickness, suggesting a viscous depen-
dence of the outer layer. There is also the largely unresolved question of the inter-
action between the inner and outer layer. Some degree of interaction is entirely to be
expected (see, for example, Walker (1990) for a compelling argument), and therefore
the outer layer motions must show some level of dependence on viscosity.
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Secondly, the model is unlikely to hold at higher Mach numbers (greater than 7),
where energy transfer and dissipation due to pressure fluctuations and ‘true’
compressibility effects are expected to become important. That it even seems to hold
at a Mach number of 7 could be taken as support for the observation that the
influence of compressibility (such as that caused by pressure fluctuations) on wall
bounded flows at supersonic Mach numbers appears to be rather weak.

Thirdly, the model supposes that hairpin vortices of high aspect ratio persist as a
dynamical feature of the outer flow for very long times, especially in flows where
there is a large decrease in the viscosity away from the wall, as in hypersonic flows.
It follows that transition effects, for example, will be felt for a long distance
downstream, especially in hypersonic flows. This has been a concern in the
hypersonic community for some time, and the present model may serve as a guide
for designing turbulent hypersonic boundary layer experiments.

Fourthly, for a hairpin vortex to achieve a high aspect ratio in the first place
requires that vortex stretching must dominate viscous diffusion during its growth.
Considerations of a stretching, viscous vortex (presented earlier) indicates that the
stretching rate must be Reynolds number dependent, which appears to be consistent
with the evolution of the outer-layer velocity distribution as a function of Reynolds
number.

This work was conducted under AFOSR Grants 90-0217 and 89-0420, monitored by Dr J.
McMichael.
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gure 2. (a) Streamwise cross-section of a Mach 2.5 boundary layer with Re, = 25000, obtained
ing Ravleigh scattering: Smith ef al. (1988). (b) Streamwise cross-section of a subsonic boundary

= . by ) = _ .
wver with Re, = 4000, obtained using oil droplet visualization (Falco 1977). (¢) Streamwise cross-
:ction of a computer-generated subsoniec boundary layer with Re, = 670, showing iso-vorticity
mtours. The flow is direct Navier-Stokes simulation (Spalart 1988 : Robinson 1990). Figure from
pina et al. (1991).
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